Confluent
Deploying Apache Kafka on AWS Elastic Block Store (EBS)
Andere Systeme mit Apache Kafka verbinden

Deploying Apache Kafka on AWS Elastic Block Store (EBS)

David Tucker

Apache Kafka is designed to be highly performant, reliable, scalable, and fault tolerant. At the same time, the performance and reliability of a Kafka cluster is highly dependent on the underlying infrastructure. That interdependence makes the right infrastructure choices critical to any successful deployment. For users who have made the decision to deploy Kafka on the AWS Cloud, making the right choices on storage infrastructure can seem daunting. The reality is that selecting reasonable infrastructure is easier than you think.

Let’s start by thinking about the Kafka cluster at a high level. At its core, the Kafka cluster is a set of servers that offer a shared service where data can be published and retrieved by external clients. Each server is referred to as a Kafka broker, and the data managed by the brokers is logically divided into distinct topics. Data for each topic is persisted locally on the brokers, in a replicated and partitioned manner that prevents data loss or catastrophic disruption if a broker fails. By design, Kafka clusters will automatically re-replicate data and re-balance the client connections when a broker node is lost from the cluster. The brokers are optimized to aggregate the physical I/O for the topic data, resulting in a general pattern of sequential operations against the storage tier. Readers interested in a more comprehensive discussion of the Kafka architecture can refer to the documentation.

Consider what this implies for the underlying storage infrastructure in a Kafka Cluster. Obviously, the absolute performance is critically important… as higher performance reduces the time needed to persist the data as it arrives in the cluster as well as the time needed to retrieve data for a consume or a new cluster node when re-replication is needed. EBS volumes in AWS are an excellent option here. They provide consistent levels of I/O performance (IOPS) and ultimate flexibility in their deployment. A properly designed Kafka cluster based on EBS storage can virtually eliminate the re-replication overhead that would be triggered by an instance failure, as the EBS volumes can be reassigned to a new instance quickly and easily. And from an operations perspective, a Kafka cluster deployed against EBS storage can be shut down cleanly without risk of data loss, a capability not possible when using EC2 Local Instance Storage.

This is why we view the new st1 and sc1 EBS offerings from Amazon as very promising. At a cost up to 50% lower than earlier EBS offerings, and optimized for sequential I/O workloads, we observed that these storage volumes delivered the performance and reliability needed for Kafka environments. We will conduct more detailed testing and welcome hearing about what others have found. (See Amazon blog: EBS Update – New Cold Storage and Throughput Options) .

The other infrastructure components (CPU, memory, networking) also play an important role in the capabilities of any Kafka cluster. In future blogs, I’ll discuss the considerations for those sub-systems in greater detail. It was important to start with storage, because reliable, persistent data platforms such as Kafka are impossible without it.

Subscribe to the Confluent Blog

Abonnieren

More Articles Like This

Connecting to Kafka on Docker
Robin Moffatt

Kafka Listeners – Explained

Robin Moffatt .

This question comes up on Stack Overflow and such places a lot, so here’s something to try and help. tl;dr: You need to set advertised.listeners (or KAFKA_ADVERTISED_LISTENERS if you’re using ...

Four Pillars of Event Streaming
Neil Avery

Journey to Event Driven – Part 4: Four Pillars of Event Streaming Microservices

Neil Avery .

So far in this series, we have recognized that by going back to first principles, we have a new foundation to work with. Event-first thinking enables us to build a ...

Confluent Control Center
Tim Berglund

Dawn of Kafka DevOps: Managing Kafka Clusters at Scale with Confluent Control Center

Tim Berglund .

When managing Apache Kafka® clusters at scale, tasks that are simple on small clusters turn into significant burdens. To be fair, a lot of things turn into significant burdens at ...

Leave a Reply

Your email address will not be published. Required fields are marked *

Try Confluent Platform

Download Now

Wir verwenden Cookies, damit wir nachvollziehen können, wie Sie unsere Website verwenden, und um Ihr Erlebnis zu optimieren. Klicken Sie hier, wenn Sie mehr erfahren oder Ihre Cookie-Einstellungen ändern möchten. Wenn Sie weiter auf dieser Website surfen, stimmen Sie unserer Nutzung von Cookies zu.