Unleashing Apache Kafka®and TensorFlow in the Cloud

Unleashing Apache Kafka ® and TensorFlow in the Cloud

Register Now

September 07th, 2018
10 am BST / 11 am CEST

In this online talk, Technology Evangelist Kai Waehner will discuss and demo how you can leverage technologies such as TensorFlow with your Kafka deployments to build a scalable, mission-critical machine learning infrastructure for ingesting, preprocessing, training, deploying and monitoring analytic models.

He will explain challenges and best practices for building a scalable infrastructure for machine learning using Confluent Cloud on Google Cloud Platform (GCP), Confluent Cloud on AWS and on-premise deployments.

The discussed architecture will include capabilities like scalable data preprocessing for training and predictions, combination of different deep learning frameworks, data replication between data centers, intelligent real-time microservices running on Kubernetes and local deployment of analytic models for offline predictions.  

Join us to learn about the following:

  • Extreme scalability and unique features of Confluent Cloud
  • Building and deploying analytic models using TensorFlow, Confluent Cloud and GCP components such as Google Storage, Google ML Engine, Google Cloud AutoML and Google Kubernetes Engine in a hybrid cloud environment
  • Leveraging the Kafka ecosystem and Confluent Platform in hybrid infrastructures

         

Speaker

Kai Waehner

Kai Waehner
Technology Evangelist, Confluent

Kai’s areas of expertise include big data analytics, machine learning, deep learning, messaging, integration, microservices, the internet of things, stream processing and the blockchain. He is regular speaker at international conferences and has written a number of articles for professional journals.

Wir verwenden Cookies, damit wir nachvollziehen können, wie Sie unsere Website verwenden, und um Ihr Erlebnis zu optimieren. Klicken Sie hier, wenn Sie mehr erfahren oder Ihre Cookie-Einstellungen ändern möchten. Wenn Sie weiter auf dieser Website surfen, stimmen Sie unserer Nutzung von Cookies zu.